20 lucruri complet neștiute despre Aurora Boreală

0

Aurora polară este un fenomen optic ce constă într-o strălucire intensă observată pe cerul nocturn în regiunile din proximitatea zonelor polare, ca rezultat al impactului particulelor de vânt solar în câmpul magnetic terestru.

Iată câteva lucruri mai puțin știute despre aurora boleară

  1. Când apare în emisfera nordică, fenomenul e cunoscut sub numele de aurora boreală, termen folosit inițial de Galileo Galilei, cu referire la zeița romană a zorilor, Aurora, și la titanul care reprezenta vânturile, Boreas. Apare în mod normal în intervalele septembrie-octombrie și martie-aprilie. În emisfera sudică, fenomenul poartă numele de auroră australă, după James Cook, o referință directă la faptul că apare în sud.
  2. Fenomenul nu este exclusiv terestru, fiind observat și pe alte planete din Sistemul Solar, precum Jupiter, Saturn, Marte și Venus. Totodată, fenomenul este de origine naturală, deși poate fi reprodus artificial prin explozii nucleare sau în laborator.
  3. Aurora apare în mod obișnuit atât ca o strălucire difuză cât și ca o cortină extinsă în spațiu orizontal. Câteodată se formează arcuri care își pot schimba forma permanent. Fiecare cortină este compusă dintr-o serie de raze paralele și aliniate pe direcția liniilor de câmp magnetic, sugerând faptul că fenomenul de pe planeta noastră este aliniat cu câmpul magnetic terestru. De asemenea, variabilitatea unor anumiți factori poate determina formarea de linii aurore de tonalități și culori diferite.
  4. Aurora polară terestră e provocată de ciocnirea unor particule încărcate electric (de exemplu electroni) din magnetosferă cu atomi din straturile superioare ale atmosferei terestre, aflate la altitudini de peste 80 km. Aceste particule electrice au o energie de 1 până la 15 keV iar coliziunea lor cu atomii de gaz din atmosferă determină energizarea acestora din urmă. Prin fiecare coliziune o parte din energia particulei este transmisă atomului atins, într-un proces de ionizare, disociere și excitare a particulelor. În timpul ionizării, electronii se desprind de atom, care încarcă energie și determină un efect de ionizare de tip domino în alți atomi. Excitația rezultă în emisie, ducând atomul în stări instabile, dat fiind că aceștia emit lumină în frecvențe specifice când se stabilizează. Dacă procesul de stabilizare a oxigenului durează până la o secundă, azotul se stabilizează și emite lumină instantaneu. Acest proces, esențial în formarea ionosferei terestre, este comparabil cu cel ce stă la baza ecranului de televizor: electronii ating suprafața de fosfor, alterând nivelul de energie al moleculelor, fapt care rezultă în emisiunea de lumină.
  5. În general, efectul luminos este dominat de emisiunea de atomi de oxigen în straturile superioare ale atmosferei (aproximativ 200 de kilometri de altitudine), care produce tonalitatea verde. Când se produc furtuni puternice, straturile inferioare ale atmosferei sunt atinse de vântul solar (la aproximativ 100 de kilometri altitudine), producând tonalitatea roșu închis prin emisiunea de atomi de azot (predominantă) și oxigen. Atomii de oxigen emit tonalități de culori variate, deși, de cele mai multe ori, se întâlnesc roșul sau verdele.
  6. Fenomenul poate apărea și ca o luminescență ultravioletă, violetă sau albastră, datorată atomilor de azot, prima dintre acestea putând fi foarte bine observată din spațiu (dar nu de pe Pământ, pentru că atmosfera absoarbe razele UV). Satelitul NASA Polar a observat efectul în raze X, imaginile ilustrând precipitații de electroni de energie ridicată.
  7. Interacțiunea între moleculele de oxigen și azot, ambele generatoare de tonalități ale culorii verde, creează efectul de „linie verde aurorală”. În același fel, interacțiunea dintre acești atomi poate produce efectul de „linie roșie aurorală”, deși mai rar și prezent în altitudini mai ridicate.
  8. Planeta noastră este atinsă permanent de vânturi solare, fluxuri rarefiate de plasmă caldă (gaz de electroni liberi și cationi) emise de Soare în toate direcțiile, ca rezultat al temperaturii înalte a coroanei solare, stratul exterior al stelei. Pe durata furtunilor magnetice, fluxurile pot fi mai puternice, asemenea câmpului magnetic interplanetar apărut între două corpuri celeste, determinând conturbarea ionosferei în răspuns la furtuni. Asemenea tulburări afectează calitatea comunicațiilor radio sau a sistemelor de navigare, putând afecta astronauții din aceste regiuni, celulele solare ale sateliților artificiali, indicația busolelor și acțiunea radarelor. Acțiunea ionosferei este complexă și dificil de modelat, îngreunând prezicerea fenomenelor de acest tip.
  9. Magnetosfera terestră este o regiune din spațiu dominată de câmp magnetic. Ea se constituie ca un obstacol în drumul vântului solar, cauzând dispersarea sa pe sensul de întoarcere. Lățimea sa este de aproximativ 190 000 Km, iar în timpul nopților o lungă coadă magnetică se extinde pe distanțe chiar și mai mari.
  10. Aurorele sunt încadrate în general în regiuni cu format oval, apropiate polurilor magnetice. Când activitatea efectului este calmă, regiunea dispune de o dimensiune medie de 3 mii de kilometri, putând varia până la 4 sau 5 mii de kilometri când vânturile solare se intensifică.
  11. Sursa de energie a aurorelor este dată de vânturile solare care circulă pe Terra. Atât magnetosfera, cât și vânturile solare pot conduce electricitate. Este cunoscut faptul că dacă două conductoare electrice legate într-un circuit electric sunt introduse într-un câmp magnetic, iar unul dintre ele se deplasează în jurul celuilalt, în circuit este generat un curent electric. Generatoarele electrice și dinamurile utilizează acest principiu, însă conductoarele tradiționale pot fi înlocuite de plasme sau chiar alte fluide. În acest context, vântul solare și magnetosfera sunt fluide conductoare de electricitate cu mișcare relativă, fiind astfel capabile să genereze curent electric, care produce efect luminos.
  12. Cum polurile magnetice și geografice ale planetei noastre nu sunt aliniate, în același fel regiunile aurorale nu sunt aliniate cu polul geografic. Cele mai bune puncte de observație a aurorelor se găsesc în Canada pentru aurorele boreale și pe insula Tazmania sau în sudul Noii Zeelande pentru aurorele australe.
  13. Aurorele boreale sunt studiate la nivel științific încă din secolul XVII. În 1621, astronomul francez Pierre Gassendi a descris fenomenul observat în sudul Franței. În același an, astronomul italian Galileo Galilei a început investigarea fenomenului ca parte dintr-un studiu referitor la mișcările astrelor cerești. Faptul că raza acoperită de studiul său era continentul european s-a concretizat în observarea fenomenului în nordul continentului, de unde numele de auroră boreală.
  14. În secolul XVIII navigatorul englez James Cook a constatat prezența fenomenului observat de Galileo în Oceanul Indian, botezându-l aurora australă. De atunci a devenit clar că efectul nu era exclusiv emisferei nordice terestre, motiv pentru care a apărut denumirea de auroră polară.
  15. În aceeași epocă, astronomul britanic Edmond Halley a emis ipoteza potrivit căreia câmpul magnetic terestru ar fi legat de fenomenul de formare a aurorelor boreale. În 1741, Hiorter și Anders Celsius au fost primii care au înregistrat evidențe ale controlului magnetic când se observau aurorele.
  16. Henry Cavendish a calculat în 1768 altitudinea la care apare fenomenul, însă a fost abia în 1896 când prima auroră a fost reprodusă în laborator de către Kristian Birkeland. Omul de știință, a cărui experimente în camera de vid cu raze de electroni și sfere magnetice au demonstrat că electronii se orientau spre regiunile polare, a propus în 1900 ipoteza conform căreia electronii din auroră ar proveni din razele solare. Această presupunere este problemtică datorită lipsei de dovezi în spațiu, nemaifiind considerată valabilă în cercetarea actuală. Birkeland dedus totodată în 1908 orientarea de la est la vest a curenților magnetici.
  17. Alte evidențe ale legăturii dintre fenomen și câmpul magnetic sunt registrele statistice ale aurorelor polare. Elias Loomis (1860) și, mai târziu, Hermann Fritz (1881) au stabilit că aurora apare de principiu într-o regiune de forma unui inel pe o rază de aproximativ 2500 de kilometri depărtare de polul magnetic terestru. Loomis a descoperit totodată legătura dintre formarea aurorelor și activitatea solară, observând ocurența aurorelor boreale în Canada, într-un interval de 20 până la 40 de ore după o erupție solară.
  18. Lucrările lui Carl Stormer în domeniul mișcării particulelor electrificate în câmp magnetic au facilitat comprehensiunea mecanismului de formare a aurorelor.
  19. În deceniul 1950 a fost descoperită emisia de materie a Soarelui, denumită vânt solar, efect care explică, între altele, și poziționarea cozii cometei, întotdeauna opusă față de Soare. Această teorie a fost formulată de fizicianul american Newman Parker în 1957, fiind confirmată în anul următor de satelitul Explorer I. Începând de atunci, explorarea spațială a permis augmentarea cunoștințelor despre aurorele terestre, și totodată observarea fenomenului pe alte planete, ca Jupiter și Saturn.
  20. James Van Allen a invalidat în 1962 teoria potrivit căreia aurora constituie excesul centurii de radiații. El a demonstrat că gradul mare de disipare a energiei aurorei ar seca rapid întreaga centură de radiații. Curând după aceea s-a constatat că cea mai mare parte a energiei rezidă în cationi, în timp ce particulele aurorei sunt aproape întotdeauna electroni cu energie relativ scăzută. În 1972 s-a descoperit faptul că aurorele și curenții magnetici asociați lor produc o puternică emisie de radio de 150 kHz, efect ce poate fi observat doar din spațiu.